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1. Introduction and conclusions

Recently, Kachru et al. proposed an interesting set-up to stabilize the moduli within the

framework of type IIB string theory orientifolds. The KKLT set-up [1] involves three steps

to achieve a SUSY breaking Minkowski vacuum, while stabilizing all moduli. The first step

is to introduce the NS and RR 3-form fluxes, H3 and F3, stabilizing the dilaton S and all

complex structure moduli Uα [2]. In the second step, the overall Kahler modulus T is fixed

by non-perturbative effects such as gaugino condensation [3]. The last step is to introduce

an explicit SUSY breaking term induced by anti D3-branes providing a positive uplifting

potential which would generate a dS vacuum. An obvious drawback of this procedure is

the third step, the need of introducing a sector with nonlinearly realized supersymmetry.

It was later proposed [4] to replace in the third step the antibranes by a D-term sponta-

neous supersymmetry breaking sector induced by magnetic fluxes on the world-volume of

D7-branes. As shown later on [5 – 8] and reviewed in section 2, however, gauge invariance

imposes restrictions on the resulting effective Lagrangian which makes this step difficult to

reconcile with low-energy supersymmetry, namely D-terms uplifting asks (in the absence of

additional fine-tuning) for a very large gravitino mass, generically two orders of magnitude

below the Planck mass. We show explicitly in section 3 by analytical methods, in the case

where the gaugino condensation scale is below the Fayet-Iliopoulos (FI) scale, that the

generic value of the D-terms is of the order of D ∼ m2
3/2, whereas values needed for the up-

lifting are of order D ∼ m3/2MP . It is possible to have much larger values of the D-terms,

of order g4M4
P , where g denotes some gauge coupling constant [6, 7], at the price of having

no separation between the FI terms and the gaugino condensation scale, the outcome being
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a very large gravitino mass. Whereas this result can be avoided in more involved construc-

tions, we believe that generically an additional fine-tuning will be needed in order to keep

the gravitino light. In the second part of this letter, we show that the situation changes

significantly by including corrections to the Kahler potential of the relevant modulus field

T . Such corrections arise inevitably through quantum corrections and/or α′ corrections in

string theory. We show in general and exemplify with an example that in this case the

uplifting is more likely to be compatible with low energy supersymmetry. We leave for

future work a complete phenomenological analysis of the uplifting models we studied from

the point of view of the computation of soft terms and their low-energy consequences.

The plan of this letter is as follows. Section 2 discusses the issue of D-term uplifting

versus gauge invariance. In section 3 we work out analytically the example of a hidden

sector coupled to an anomalous U(1) gauge symmetry, in the limit where the FI scale is

much higher than the gaugino condensation scale, in both cases of positive and negative

value of the FI term. In the first case, the requirements of zero vacuum energy and TeV

scale gravitino mass asks for unrealistically low values of the FI term in the TeV range,

whereas natural values of the FI term lead to gravitino masses larger than about 10−2MP .

In the second case, zero vacuum energy with TeV gravitino mass asks for intermediate

values of the FI term, whereas natural values of the FI term lead to gravitino masses larger

than about 10−6MP . Section 4 presents the general features of Kahler uplifting and an

explicit example illustrates the compatibility between the Kahler uplifting and TeV values

for the gravitino mass.

2. D-terms, gauge invariance and anomalies

2.1 The heterotic case

Gaugino condensation in heterotic theories in the presence of the (generic) anomalous U(1)

gauge symmetry has to fulfill the consistency requirements dictated by the coexistence of

the two local symmetries: supersymmetry and the gauge symmetry. Indeed, U(1) gauge

transformations act as1

δVX = Λ + Λ̄ , δφi = −2 qi φi Λ ≡ −2XiΛ ,

δS = δGS Λ ≡ −2 XSΛ , (2.1)

where Xi,XS define the holomorphic Killing vectors, which appear in the D-term

DX = Xi ∂iG = Xi ∂iK = qi φi ∂iK +
δGS

2(S + S̄)
, (2.2)

where in (2.2) G = K + ln |W |2 and we used the gauge invariance of the superpotential

Xi∂iW = 0. The FI term is encoded in the modified Kahler potential for the universal

dilaton-axion

K = − ln (S + S̄ − δGSVX) . (2.3)

1We use here the same convention as in [9] to define charges of chiral superfields.
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The pure Super-Yang-Mills gaugino condensation superpotential e−3S/2b0 , where b0 is the

beta function of the hidden sector, is therefore not gauge invariant. Does this mean that

gauge invariance forbids gaugino condensation to take place ? The answer to this question

in the simpler situation of the heterotic string was given some time ago in [9]. It was

shown there that the Green-Schwarz (GS) cancellation of gauge anomalies restricts the

nonperturbative dynamics such that the nonperturbative superpotential is precisely gauge

invariant. We summarize here the argument in order to generalize it later on to orientifold

models with open string fluxes. In the perturbative heterotic constructions, there is only

one possible anomalous U(1)X and one field, the universal axion-dilaton S, transforming

non-linearly under gauge transformations (2.1). Anomaly cancellation conditions relate

mixed anomalies Ci = U(1)XG2
i , where Gi are the various semi-simple factors of the gauge

group G =
∏N

i=1 Gi, such that

δGS =
C1

k1
=

C2

k2
= · · · CN

kN
=

1

192π2
Trq , (2.4)

where ki are the Kac-Moody levels defining the tree-level gauge kinetic functions

fi = ki S . (2.5)

The last term in (2.4) is the Fayet-Iliopoulos (FI) term, proportional to the mixed U(1)X -

gravitational anomaly, where Trq is the sum of U(1) charges over all the charged fermions

in the spectrum. Therefore, once the FI term is generated, all mixed anomalies have to

be different from zero and the hidden sector must contain charged matter. Taking for

simplicity a SUSY-QCD with Nc colors and Nf flavors with Nf < Nc and denoting by

Q (Q̃) the hidden sector quarks (antiquarks) of U(1) charges q (q̃), the GS conditions fix

completely the sum of the charges to be

Ch =
1

4π2
Nf (q + q̃) = δGSkh . (2.6)

This turns out to be precisely the gauge invariance condition of the nonperturbative su-

perpotential

Wnp = (Nc − Nf )

[

e−8π2khS

det(QQ̃)

] 1

Nc−Nf

. (2.7)

Notice that anomaly cancellations (2.4) and the structure of the D-term (2.2) unambigously

shows that the the charge of the hidden sector mesons QQ̃ has the same sign as the induced

FI term. Since in all heterotic models there is at least one scalar φ of the appropriate

(negative, in our conventions in what follows) charge in order to be able to compensate

the FI term at tree-level, the simplest model adressing moduli stabilisation with D-terms

contain the modulus S, the hidden sector meson fields and φ.

2.2 Orientifolds with internal magnetic fields

In order to fix T , KKLT proposes to use background fluxes for both NS and RR forms to

fix the complex-structure moduli to obtain a vacuum in which supersymmetry is broken by
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the T field because W = W0 6= 0. Then they introduce a non-perturbative superpotential

of the form Wnp = ce−aT induced by gaugino condensations on D7-branes or D3-branes

euclidian instantons. Combining the two sources of superpotentials after having integrated

out all complex-structure and dilaton fields, they considered2

W = W0 + c e−aT . (2.8)

The resulting vacuum is supersymmetric Anti de Sitter. To obtain a phenomenological

desirable de Sitter or Minkowski vacuum, the authors then proposed to uplift the energy

with a positive contribution to the potential from anti D3-branes. This has the effect of

adding an extra non-supersymmetric contribution to the scalar potential of the form:

V = VF +
k

T 2
R

, (2.9)

where k is a (fine-tuned) constant and TR = Re T . For a suitable value of k, the original

AdS vacuum get lifted to a dS one with broken (nonlinearly realized) supersymmetry.

Later on Burgess et al. [4] proposed an alternative solution by replacing the anti D3-

brane contribution with a D−term contribution originated from magnetic fluxes. These

fluxes would in turn generate a Fayet-Iliopoulos (FI) term in the 4D effective action of the

form

VD =
g2

2
D2 =

2π

TR

(

∑

i

qiKiφ
i + ξ

)2

, (2.10)

where the φi represent any matter scalar fields which are charged (with charge qi) under

the U(1)X gauge group. Ki is the derivative of the Kahler potential K with respect to the

field φi, and the FI term ξ arises from non-trivial fluxes for the gauge fields living on the

D7-branes and is given by

ξ = − δGS

2
∂T K . (2.11)

However, as was stressed in [5, 6] and [7] such proposal does not fulfill the consistency

requirements dictated by the coexistence of the two local symmetries: supersymmetry and

the gauge symmetry. Indeed, U(1) gauge transformations act as

δV = Λ + Λ̄ , δφi = −2 qiφ
iΛ ,

δT = δGSΛ (2.12)

and, in analogy with the heterotic case discussed earlier, the pure Super-Yang-Mills gaugino

condensation superpotential e−aT is not gauge invariant.

In the case of orientifold models with magnetic fluxes in the compact space, the fields

playing a role in the anomaly cancellation are Kahler moduli Ti, whereas in the intersect-

ing branes language they are the complex structure moduli Ui. Several such fields can

participate in canceling triangle anomalies and therefore anomaly cancellation conditions

are generically more complicated than the heterotic universal relation (2.4). In particular,

2See e.g. [10] for more detailed analysis of nonperturbative superpotentials in orientifold models.
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whereas in the heterotic case the U(1)X charge of the hidden sector mesons QQ̃ is always

of the same sign as the induced FI term due to (2.4), this is not necessarily always the

case in orientifold examples. We will use this possible difference later on in searching for

different uplifting possibilities.

The appropriate context are orientifold models with open string magnetic fluxes [11],

T-dual (in the absence of closed string fluxes) to intersecting brane constructions [12].

For concreteness, we summarize the case of magnetized D9 branes, but the results are

actually more general.3 On the wordvolume of D9(a) branes we can introduce magnetic

fields H
(a)
1 ,H

(a)
2 ,H

(a)
3 in the three torii describing the three complex internal spaces, of

volumes v1, v2, v3. The generic gauge group coming from D9 branes is
∏

a U(Na), where

Na is the number of the branes in a given stack. The Dirac quantization condition in this

case take the generalized form

H
(a)
i =

m
(a)
i

n
(a)
i vi

, (2.13)

where (m
(a)
i , n

(a)
i ) are integers. Their interpretation is transparent in the T-dual D6 in-

tersecting brane language, where the magnetic fields are mapped into angles that the D6

branes have with one of each cordinates of the three torii

tan θ
(a)
i = H

(a)
i =

m
(a)
i Ri2

n
(a)
i Ri1

(2.14)

for rectangular torii of volumes vi = Ri1Ri2. In this language, (m
(a)
i , n

(a)
i ) are the wrapping

numbers of the brane D6(a) along the two compact directions of the torus T 2
i . The Born-

Infeld and the Wess-Zumino couplings are

1

g2
(a)

= |n(a)
1 n

(a)
2 n

(a)
3 |v1v2v3

3
∏

i=1

√

1 + H
(a)2
i ,

SWZ = n
(a)
1 n

(a)
2 n

(a)
3

∫

C tr( es1H1+s2H2+s3H3 eF ) , (2.15)

where in the second line we used the form language, si = ±1/2 are internal fermionic

helicities and where F is the D9 brane gauge field strength. After compactification to 4d

we can then write down the gauge couplings and the axionic couplings. From the axionic

couplings and by keeping the three Kahler moduli Ti present in several 4d compactifications

(for example, the Z2 × Z ′
2 orbifold), we can guess the gauge kinetic function

fa = n
(a)
1 n

(a)
2 n

(a)
3 S − n

(a)
1 m

(a)
2 m

(a)
3 T1 − m

(a)
1 n

(a)
2 m

(a)
3 T2 − m

(a)
1 m

(a)
2 n

(a)
3 T3 . (2.16)

The first remark is that the gauge functions in orientifolds with intersecting branes are

highly dependent on how branes wrap the compact space, to be compared to the universal

form in the heterotic case (2.5). Whereas Imf in (2.16) comes precisely from the Wess-

Zumino coupling in (2.15), Ref in (2.16) only matches the compactified gauge coupling

3See [13] for a more general discussion in orientifold models with fluxes.
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in (2.15) in the case

θ
(a)
1 + θ

(a)
2 + θ

(a)
3 = 0 ↔ H

(a)
1 + H

(a)
2 + H

(a)
3 = H

(a)
1 H

(a)
2 H

(a)
3 , (2.17)

which also define the condition for preserving supersymmetry in internal magnetic fields /

intersecting branes constructions. In case where (2.17) is violated, the gauge couplings and

axionic couplings from the Born-Infeld action/ Wess-Zumino couplings do not fit into the

holomorphic fa gauge kinetic function. In addition, the U(1)(a) part of the U(Na) gauge

group becomes “anomalous”, in the sense of acquiring Fayet-Iliopoulos terms

ξa =
m

(a)
1 n

(a)
2 n

(a)
3

Re T1
+

n
(a)
1 m

(a)
2 n

(a)
3

Re T2
+

n
(a)
1 n

(a)
2 m

(a)
3

Re T3
− m

(a)
1 m

(a)
2 m

(a)
3

Re S

∼ H
(1)
1 + H

(a)
2 + H

(a)
3 − H

(a)
1 H

(a)
2 H

(a)
3 . (2.18)

Effective supergravity description seems to be valid only in the limiting case ξa ¿ 1, which

has to be dynamically obtained in models with moduli stabilisation. In this case, the

FI terms can be incorporated into the effective action via the modification of the Kahler

potential

K = − ln (S + S̄ + m
(a)
1 m

(a)
2 m

(a)
3 Va) − ln (T1 + T̄1 − m

(a)
1 n

(a)
2 n

(a)
3 Va)

− ln (T2 + T̄2 − n
(a)
1 m

(a)
2 n

(a)
3 Va) − ln (T3 + T̄3 − n

(a)
1 n

(a)
2 m

(a)
3 Va) , (2.19)

which also fixes the U(1)a gauge transformations of the moduli fields

δVa = Λa + Λ̄a , δS = −m
(a)
1 m

(a)
2 m

(a)
3 Λa ,

δT1 = m
(a)
1 n

(a)
2 n

(a)
3 Λa , δT2 = n

(a)
1 m

(a)
2 n

(a)
3 Λa ,

δT3 = n
(a)
1 n

(a)
2 m

(a)
3 Λa . (2.20)

Anomaly cancellation in orientifold models with fluxes is therefore considerably more

involved than in the heterotic case (not to mention the fact that twisted closed fields can

and typically do also play a nontrivial role in gauge and gravitational anomaly cancellation).

A notable difference, which we will invoke later on, is that there is no clear cut correlation

between the sign of FI terms and charges of hidden (or observable) sector fields. Indeed,

the induced FI terms (2.18) can have either sign depending on the v.e.v.’s of moduli fields,

whereas charges in a given sector depend on details of the model. Notice that it is also

possible (but not automatic) by partial cancellations between different contributions that

ξa ¿ 1, such that an effective supergravity analysis to be valid.

3. D-terms uplifting

3.1 Stabilization with negative vacuum energy

Recently, the authors of [6] and [7] tried to implement gauge invariance in the search for

consistent de Sitter vacua. This was indeed realized, at the expense of having a high scale

of gaugino condensation, close to the Planck scale. Consequently, these models have a large
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gravitino mass, more appropriate for the split supersymmetry scenario. It was concluded

that it seems very hard to obtain a gravitino mass in the TeV scale region. In the rest

of this section, we analyze, for a model with just one (overall) volume modulus T , the

difficulties arising from a consistent D-term uplifting of the vacuum energy with TeV scale

gravitino mass and possible ways out.4 The minimal model we consider here is that of a

hidden sector coming from D7-branes, which is a SQCD with less number of flavors Nf

than colors Nc. For simplicity of analysis we take Nf = 1, Nc = 2. The example assumes

(this assumption, as we already explained, is always true in the heterotic case) that the

FI term has the same sign (chosen positive, by convention) as the hidden sector meson

charge. An important difference compared to the examples in [6] and [7] is that we use

the existing string “data” in that, in all existing constructions, there is always at least one

field of appropriate charge which, in the absence of nontrivial superpotential dynamics, is

able to compensate the FI term. We call this field φ in what follows and assign it the

charge −1, after an appropriate rescaling of the charge generator. If the meson charge

q is integer, this will have the consequence of inducing higher dimensional operators of

the type φqM which, once φ gets a vev, effectively give the hidden sector mesons a mass.

Since the gaugino condensation scale and consequently the meson vev’s M0 arise through

dimensional transmutation, they are expected to be well below the scale of the FI terms ξ.

This will allows us, following [9], to solve analytically for the vev’s of the various fields and

the scale of supersymmetry breaking, in an expansion in the small parameter ε = M0/ξ.

Following [9], we write down the consistent effective potential of a strongly coupled

SU(2) theory with Nf = 1 flavor of ”quarks” Q1 of U(1)X charge q1 in the fundamental of

SU(2) and ”antiquarks” Q̃1 of charge q̃1 in the anti-fundamental of SU(2). For simplicity

in the calculation and analysis, from the meson field M , we will define the field χ as

χ2 = 2M = 2Q1Q̃1, q = q1 + q̃1. Introducing a single field φ of U(1)X charge normalized

to -1, it is straightforward to construct a supersymmetric and gauge invariant Lagrangian.

It will be completely determined by the gauge kinetic functions

fa =
T

2π
, (3.1)

the Kahler potential

K = − 3 ln[T + T − |φ|2 − |χ|2] , (3.2)

and the gauge invariant superpotential

W = W0 +
c

χ2
e−aT + m̃φqχ2 . (3.3)

Gauge invariance of the nonperturbative term fixes the mesons charges to be

q =
a

4
δGS . (3.4)

We can then compute the F-term and D-term contributions VF and VD to the scalar

potential

VF = eK
(

KIJ̄DWID̄W̄J̄ − 3|W |2
)

4During the completion of this work, reference [8] appeared, which overlaps with our results in sections

3.1 and 3.2.
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=
1

r3
{r2

3
|∂T W − 3

r
W |2 +

r

3

2
∑

i=1

|∂iW + φi∂T W |2 − 3|W |2} , (3.5)

VD =
4π

T + T

(

qiφ
i∂iK − δGS

2
∂T K

)2

=
36π

(T + T )r2

[

−|φ|2 +
q

2
|χ|2 + ξ̃2

]2
, (3.6)

where ξ̃2 = 3δGS/2 > 0, φi = φ, χ and we have introduced r = (T + T − ∑

i |φi|2).
Substituting the Kahler potential and superpotential given by eqs. (3.2) and (3.3), we can

write the total potential as

Vtot = VF + VD = 1
3r |ace−aT

χ2 + 3
rW |2 + 1

3r2 |qm̃φq−1χ2 − φace−aT

χ2 |2

+ 1
3r2 |−2ce−aT

χ3 + 2m̃φqχ − χace−aT

χ2 |2 − 3
r3 |W |2 + 36π

r2(T+T )

[

−|φ|2 + q
2 |χ|2 + ξ̃2

]2
.

(3.7)

3.2 The solution of the equation of motions

The minimum of the potential (3.7) is obtained by making an expansion around the fields

configuration (T0, φ0, χ0)

φmin = φ0 (1 + εφ1 + ε2φ2) ,

χmin = χ0 (1 + εχ1) ,

Tmin = T0 , (3.8)

where ε is the parameter of the expansion, proportional to the ratio of the dynamic scale

to the fundamental scale (M0/ξ̃
2 in the notation of this section). In (3.8), φ0 and χ0

are the solutions of the eqs. of motion by considering the two relevant scales, M0 and

ξ̃2, decoupled or, equivalently, infinitely far apart and also neglecting the supergravity

corrections to the scalar potential. Consequently, they are defined by the equations of the

global supersymmetry D and F flatness

D(0) = −|φ0|2 + ξ̃2 = 0 ,

F (0)
χ = − 2c

χ3
0

e−aT0 + 2m̃φq
0χ0 = 0 . (3.9)

The explicit value of T0 is not needed in finding φmin and χmin and will be specified later

on, but for consistency of the supergravity analysis it has to satisfy T0 À 1 in supergravity

units. At first sight, it can seem strange to develop φ at second order into ε and χ only

at first order. In fact, as we will see later, we need to calculate φ up to second order in

order to get the leading D-term contribution. T can be evaluated at lowest order in the ε

expansion, as any higher order corrections does no contribute significantly to the vacuum

energy. In the limit of interest M0 ¿ ξ̃2 ¿ M2
P , the leading terms in the field equations

for φ and χ are the ones coming from the global supersymmetry limit

∂V

∂φ
' ∂Vglobal

∂φ
= 0 ,

∂V

∂χ
' ∂Vglobal

∂χ
= 0 (3.10)

and they are solved precisely as in [9] in a power expansion in ε. The minimization with

respect to T ,
∂V

∂T
= 0 (3.11)

– 8 –



J
H
E
P
1
0
(
2
0
0
6
)
0
4
4

has clearly to be done with the full SUGRA potential (3.7). The intuitively natural zeroth

order ansatz F
(0)
T = 0, which would imply W0 ∼ m̃φq

0χ
2
0 turns out to be wrong, i.e. not to

lead to a solution of (3.11). The self-consistent solution, in our approximations, turns out

to be obtained by

W0 ' −m̃q2

3a
φq−2

0 χ2
0 . (3.12)

Finally, the complete set of solutions, including the two subleading terms in φ and one

subleading term in χ, needed for a consistent treatment, are given by

φmin = ξ̃

(

1 − 3

4

aW0

m̃qξ̃q
− 9

32

a2W 2
0

q2m̃2ξ̃2q
− 9

16

a2W 2
0

m̃2qξ̃2q
+

(q − 2)aW 2
0

24πq2ξ̃2
ln

[

9a2W 2
0

cm̃q4ξ̃q−4

])

(3.13)

χmin =

√

−3aW0

m̃q2ξ̃q−2

(

1 +
3

8

aW0

m̃ξ̃q

)

, (3.14)

Tmin = − 1

a
ln

[

9a2W 2
0

cm̃q4ξ̃q−4

]

. (3.15)

Notice that the vev of φ generates effectively a mass for the mesons mχ ∼ m̃ξ̃q. It is

interesting to point out here two kind of approximation we’ll use to find the coefficients εφ1,

ε2φ2 and εχ1: χ0 ¿ φ0 ¿ MP . The first approximation is coming from the global SUSY

ansatz Fχ ∼ ∂χW = 0. The second one is necessary for having an effective supergravity

description. The expansion parameter is then given by

ε =
M0

ξ̃2
=

−3aW0

2q2m̃ξ̃q
= − −3aW0

q2mχM2
P

¿ 1 , (3.16)

where in the list equality we reinstalled the Planck mass. From the solutions (3.13)- (3.15)

, we can easily extract the values of the different auxiliary fields Fφ, Fχ and F T at the

minimum of the potential:

Fφ =
W0ξ̃√
2T0





a

q
+

1

r
−

(

aξ̃

q

)2


 ,

Fχ =
W0√
2T0

√

−3aW0

m̃q2ξ̃q−2



−5

8

a

m̃ξ̃q
+

1

r
−

(

aξ̃

q

)2


 ,

F T =
W0√
2T0



2T0





1

r
−

(

aξ̃

q

)2


 +
aξ̃2

q2



 ,

D =
3(q − 2)a2W 2

0

24πq2
, (3.17)

where we defined F i = Kij̄ exp(K/2)Dj̄W̄ . From the auxiliary fields, it becomes straight-

forward to calculate the vacuum energy at the minimum:

V0 ' − 3a2W 2
0 ξ̃2

4q2T 2
0

+
(q − 2)2a4W 4

0

32πT0q4
, (3.18)
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where the first, negative term is the F-term contribution, while the second, positive one is

the D-term contribution. It is interesting to calculate the value we need for W0 in order to

have a zero cosmological constant. We get

W zero cc
0 '

√

24π

T0

ξ̃q

a(q − 2)
. (3.19)

It becomes clear from eq. (3.19) that the FI scale is tightly linked with the gravitino mass

(given roughly by W0 in Planck scale units). In another words a very small FI scale is

needed to achieve a TeV SUSY spectrum. By using (3.4) it turns out that the gravitino

mass and the FI term are related by m3/2 ∼ W0/M
2
P ∼ ξ̃4/M3

P , so TeV scale gravitino would

imply roughly ξ̃ ∼ 1015GeV . Whereas this is maybe not imposible to imagine in certain

orientifold models, (3.4) then implies unnaturally small meson charges q ∼ 10−8. TeV

scale gravitino mass is therefore very difficult to obtain. This may be a phenomenological

shortcoming if one attempts to get conventional low-energy SUSY. A similar result were

obtained by the authors of [7], which did use non-massive mesons fields.

Our results can be understood qualitatively by noticing that, by defining the gravitino

mass

m3/2 = WeK/2 ' W0

2
√

2T
3/2
0

, (3.20)

at the minimum the F-terms and the D-term are of the order (we neglect here numerical

factors)

Fφ

φ0
∼ Fχ

χ0
∼ F T ∼ T0 m3/2 ,

D ∼ T 3
0 m2

3/2 . (3.21)

Consequently, the F and D contributions to the vacuum energy in (3.18) are qualitatively

of the form 〈V 〉 = VF + VD ∼ −m2
3/2ξ̃

2 + m4
3/2 and their cancellation can only occurs for a

very large gravitino mass, modulo the case of very small FI term discussed in the previous

paragraph.

Finally, we would like to point out that the analysis in this section and the next one,

although described in terms of the Type IIB set-up used by KKLT, is valid with small

changes also for models coming from heterotic string construction.

3.3 Stabilization with positive vacuum energy

We have seen that positive FI term does not give a sufficient contribution to the D-term

scalar potential to obtain a zero cosmological constant. However, it was recently stressed

by the authors of [5] that negative FI terms could lead to important D-terms in the case

q = 1, i.e. the meson masses come from a Yukawa type term in the superpotential φχ2. Due

to the non universal nature of the anomaly cancellation conditions in orientifold models,

this is a new possibility to explore. It is natural to see if it is possible to stabilize the

moduli fields in this case. The microscopic model we have in mind for this section is the

following. Consider an intersecting brane model like in section 2.2, with fluxes on a stack
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of branes containing both the anomalous U(1) and the hidden sector gauge group, such

that m2,m3 > 0, whereas m1 < 0. In this case, the modulus T1 appears with a negative

coefficient in the gauge kinetic function (2.16) and also in the induced FI term (2.18). If

the other two Kahler moduli T2, T3 are stabilized in a supersymmetric way, then the only

unstabilized modulus T1 realizes the case ii) in the section 5 of [5] where the sign of the

FI term is such that the fields which have to condense in order to compensate it are the

composite, hidden sector mesons. As we already mentioned in section 2.1, this is impossible

to realize in the heterotic case, but possible in orientifold models with magnetized D-branes.

Notice that generically the resulting U(1) gauge symmetry becomes a gauged R-symmetry,

however in the special case where after stabilization the resulting FI term has no pure

constant (i.e. S0, T2, T3 dependent ) piece, it is still a regular gauge symmetry. As will

become clear from our discussion below, this is more interesting case to analyze. If the

charge q = 1, according to [5] we expect a large D-term. The effective action in this

situation is

K = − ln

(

T1 + T̄1 −
∑

i

|φ|2
)

, fh =

(

3
∏

i=1

nh
i

)

S0 − αhT1 ,

fU(1) =

(

3
∏

i=1

nU(1)
i

)

S0 − α1T1 , W = W0 +
c

χ2
eαhT1 + λφχ2 , (3.22)

where nh
i (nU(1)

i ) are here the wrappping numbers for the hidden sector branes (U(1) brane),

where φi = φ, χ, c is an effective (exponentially small ) constant c ∼ exp(−|nh
1nh

2nh
3 |S0)

and S0 is the stabilized value of the dilaton. The F and D-term contributions to the scalar

potential in this case are found to be

VF =
1

r

{

r2

∣

∣

∣

∣

∂T W − 1

r
W

∣

∣

∣

∣

2

+ r
∑

i

∣

∣∂iW + φi∂T W
∣

∣

2 − 3|W |2
}

= r

∣

∣

∣

∣

αhceαhT1

χ2
− 1

r
W

∣

∣

∣

∣

2

+

∣

∣

∣

∣

λχ2 + φ
αhceαhT1

χ2

∣

∣

∣

∣

2

+

∣

∣

∣

∣

−2c eαhT1

χ3
+ 2λφχ + χ

αhceαhT1

χ2

∣

∣

∣

∣

2

− 3

r
|W |2 ,

VD =
4π

r2[S0 + S̄0 − α1(T1 + T 1)]

[

−|φ|2 +
1

2
|χ|2 − ξ′2

]2

, (3.23)

where r = T1+T̄1−
∑

i |φ|2. The D term contribution turns out to be large by minimization

due to the superpotential term W = λ φ χ2 which forbids the field χ to efficiently cancel the

large and negative FI term. Notice, as already emphasized, that in this case the composite

meson field χ has the correct charge to cancel the FI term. For a fixed T = Tmin, we find

minima for the other two fields

φmin ' c eαhTmin

4λξ′4

[

1 +
λ2[S0 + S̄0 − α1(T + T )]r2

π

]2

,

χmin '
√

2 ξ′
[

1 +
λ2[S0 + S̄0 − α1(T + T )]r2

π

]−1/2

. (3.24)
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Stabilization with respect to T then gives the minimization equation

W 2
0 ' 2λ4r3

π
[2(S0 + S̄0) − 3α1(T + T̄ )]

[

1 +
λ2[S0 + S̄0 − α1(T + T )]r2

π

]−2

ξ′4 . (3.25)

At the minimum, the auxiliary fields are of the order

Fφ ∼ λ ξ′2 , Fχ ∼ c
eαhTmin

ξ′4
, D ∼ λ ξ′2 . (3.26)

In order to be able to compensate the large positive vacuum energy from the D-term, we

need in this case W0 À (ceαhTmin/χ2
0), in which case the vacuum energy cancellation reads

approximatively
2

r
|W0|2 ' λ2|χ0|4 +

g̃2

2
D2 , (3.27)

where g̃2 = (4π)/[(S0 − α1T1)r
2]. Combining (3.25) and (3.27), we find

T 2
min(S0 − 2α1Tmin) ' π

8λ2
. (3.28)

We therefore need a relatively small λ in order to get a relatively large T1. From these

solutions, we can easily understand why the contribution from VD is large. Indeed, whereas

VD ∝ (dynamical scale)8 when the FI term is positive (giving a negligible contribution to

the cosmological constant), whereas VD ∝ (FI scale)4 for a negative FI term.

At the minimum, the FI term and the gravitino mass are related qualitatively as

ξ′2 ∼ m3/2MP /λ. Natural values for FI term ξ ∼ 10−2MP and λ ∼ 10−2 then lead to

m3/2 ∼ 10−6MP . This is an improvement compared to the case of (more traditional)

positive FI term of the last section, but is still far from the TeV range. Gravitino mass in

the TeV range is in principle possible for intermediate (of the order 1012 GeV ) values of

FI term. This looks again like a fine-tuning, though internal magnetic fields could maybe

dynamically produce such anomalously low values.

As mentioned at the beginning of this section, stabilization of the other Kahler moduli

and of the dilaton, which tranform non-linearly under the U(1) gauge transformations,

generically lead to a U(1) gauged R-symmetry. In this case, the constant W0 in (3.22) is

not allowed. If W0 is absent, a similar analysis as before shows that the vacuum energy will

always be positive. Alternatively, W0 could be replaced eventually with some dynamically

generated term of appropriate R-charge W0 ∼ φx. We didn’t investigate the outcome of

this last possibility.

Our conclusion for this section is that with (negative) FI terms partially compensated

by composite hidden sector fields, it is generically easier to get zero or positive vacuum

energy, even if the natural value of the gravitino mass is of intermediate scale values

instead of TeV scale. These class of models deserve therefore, in our opinion, more detailed

theoretical and phenomenological studies.

4. Kahler uplifting

Previous works in the context of heterotic effective supergravity [15, 16] and more recent

one [17, 18] underlined the role played by corrections to the Kahler metric for the moduli
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stabilization with a zero or positive vacuum energy. It is natural to study then their

implications on the scalar potential uplifting, and to try to find conditions to obtain a

consistent model with a dS vacuum and a TeV-scale supersymmetric spectrum. We will

consider a KKLT-like scenario with a superpotential

W = W0 + ce−aT , (4.1)

with W0 determined by the flux compactification process.5 However instead of adding the

effect of a non-supersymmetric D3-brane or D-term contributions generated by magnetic

fluxes, we consider perturbative corrections to the Kahler metric of the general form:6

K = − 3 ln [T + T ] − ∆(T, T̄ )

T + T
, (4.2)

∆ being a real function of the T field ∆ = f(T + T ) which we consider for consistency

reasons to be small ∆ ¿ 1 in the large volume limit T ¿ 1. It is straightforward to

compute the scalar potential, keeping the dominant terms in ∆ in the expansion:

V (T ) ∼ 1

(T + T )2

[

ca(e−aT W0 + e−aT W0) + |W0|2 ∆′′
]

. (4.3)

Notice that in order for eq. (4.3) to be valid, we must have |cae−aT | ¿ |W0| (considering

∆ as a perturbation to the Kahler metric). Developing T = t + iθ and considering W0 as

a real parameter, (4.3) can be re-expressed as

V (t, θ) =
1

4t2
[

2caW0e
−at cos(θa) + |W0|2 ∆′′(t)

]

. (4.4)

The minimization of (4.4) is straightforward and leads to

θ0 = π/a modulo [2π/a] , (4.5)

giving for V (t)

V (t) = V (t, θ0) =
1

4t2
[

−2caW0e
−at + |W0|2 ∆′′(t)

]

. (4.6)

We understand here why the relative sign between W0 and c is just a convention as the

phase can be reabsorbed by the axion field θ at the minimum. Notice also that the non-

perturbative effects are fundamental for the stabilization of the axion. Indeed, the correc-

tions to the Kahler metric are blind to the axion field which can only appear in the scalar

potential through the superpotential. In other words, a model with only ”pure” Kahler

contributions is not able to stabilize θ.

Form (4.6) we can deduce the two conditions we need to have a Minkowski solution at

the minimum (T0 = t0 + iθ0):

∂V

∂t
|t0 = 0 ⇒ ∆′′′|t0 = − 2 c a2 e−at0

W0
(4.7)

5By simplicity, we will consider in our discussion W0 > 0 and c > 0 whereas the authors of [1] took

W0 < 0. This is just a phase definition that can be absorbed by the axion field as it will be clear later on.
6In what follows we will use units where MP = 1.
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and

V (t0) = 0 ⇒ ∆′′|t0 =
2 c a e−at0

W0
. (4.8)

Combining (4.7) and (4.8) we obtain

∆′′′

∆′′
|t0 = −a , (4.9)

showing the connexion between non-perturbative effects and the corrections to the Kahler

potential.

From (4.6), we can deduce some general arguments concerning the function ∆(t) in

order to satisfy our basic constraints. Indeed, the potential must vanish positively when t →
∞. It implies that the positive contribution, proportional to ∆′′(t), must decrease slower

than the non-perturbative contribution (proportional to e−at). It means that ∆(t) can

be constructed by the combination of polynomial forms (α/tγ) and exponential functions

(α′e−βt/tγ
′

with β < a).

It is interesting to calculate the mass scales of such a model. The gravitino mass,

m3/2 = eK/2W , auxiliary field F t, moduli and axion masses mt, mθ are at the minimum

t0:

m3/2 ∼ W0

(2t0)3/2
, F T ∼ W0

(2t0)1/2
,

m2
t ∼ 1

6

[

−2 c a3 e−at0 W0 + W 2
0 ∆(4)(t0)

]

,

m2
θ =

1

3
c a3 W0 e−at0 . (4.10)

Contrary to the pattern of mass of the KKLT scenario studied in [14] where a ”little

hierarchy” appeared between the SUSY spectrum (∼ F T /T ) and the gravitino mass, we

don’t observe such difference in our model. Moreover, we obtain lighter moduli fields than

in KKLT scenario: m2
t is suppressed by a factor ∆′′ × t30 with respect to gravitino mass

squared. It would be very interesting to study the stability of the vacua, along the lines

of [19], in the presence of generic corrections to the Kahler potential.

4.1 An example

To illustrate , we apply our discussion to the phenomenological model developed in [17],

where ∆ was computed from the one-loop vacuum (Casimir) energy with massless and

massive fields in the higher-dimensional bulk space. In [17] supersymmetry was broken by

boundary conditions and consequently a superpotential W = ω and a correction to the

Kahler potential ∆(ω, T, T̄ ) were generated. The first step in our present investigation

is the supersymmetric limit ω → 0, in which ∆ has a well-defined limit, whereas the

superpotential vanishes. This is consistent with the fact that the superpotential is non-

renormalized under quantum corrections, whereas the Kahler potential is renormalized.

The second step is to add the KKLT type superpotential generated by fluxes and gaugino

condensation on D7-branes, which is unchanged by the the one-loop quantum corrections.
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Figure 1: Scalar potential with correction to the Kahler potential of the form (4.11) for for

W0 = 10−13, c = 10, a = 4; α0 = 3.824, α1 = 10, β1 = 0.09; α2 = −50 and β2 = 0.04.

In this case, ∆ is given by:

∆(T, T̄ ) =
1

(T + T )2

[

α0 + α1(T + T )e−β1(T+T ) + α2e
−β2(T+T )

]

, (4.11)

where the exponential terms come from contributions to the vacuum energy exp[−m(T+T̄ )]

from massive fields of mass m. The coefficients αi, βi in (4.11) are the ω → 0 limit of the

values displayed in [17]. To stabilize T with a dS vacuum and an acceptable behavior of

the potential for T ∼ 0 and large value of T , it is easy to check that we need α0 > 0, α1 > 0

and α2 < 0, whereas, as discussed above, β1, β2 < a. We illustrated the scalar potential for

specific values of the parameters (c, a, αi, βi) in figure (1), which clearly illustrate that

TeV values for the gravitino mass do not require extremely small values of the fundamental

parameters in the Kahler potential. In [18] explicit tree-level and one-loop string corections

to the Kahler potential were included in the discussion of moduli stabilization. In the large

volume limit, these corrections are probably bigger than the corrections we kept in our

example (4.11). We believe that the Kahler corrections invoked in [18], combined with

exponential corrections exp(−β(T + T̄ )) in ∆ coming from massive bulk fields produce a

stabilization pattern similar to the example we displayed in this section.
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